Branch and Bound

- One way of dealing with an NP-complete problem.
- Not polynomial.
- Complete enumeration in the worst case, but uses a clever idea to cut off much of the search space

Branch and Bound for minimizing (0-1) IPs

- Solve an LP relaxation

- Choose a variable x_{i} with value strictly between 0 and 1 .
- Branch on whether $x_{i}=0$ or $x_{i}=1$.
- Bound

- Generate feasible solutions to the IP
- At each node generate a lower bound (using the LP) on the solutions in that branch.
- If the lower bound on a branch is better than a feasible solution, kill that branch.
- When there is no more branching to be done, stop.

Dealing if NP-coupletepiddems

1. Exact solution
2. Fast algaithn
3. Works for all inputs
for NP-L problem, Gre vp on I of these features
 2^{n} dateent probloms

Branch and Bound

Combinatorial Branch and Bound for a minimization problem

- Enumerate possible values for a decision.
- Branch on all the possiblilities
- Bound
- Generate feasible solutions to original problem.
- At each node generate a lower bound (using a relaxation) on the solutions in that branch.
- If the lower bound on a branch is better than a feasible solution, kill that branch.
- When there is no more branching to be done, stop.

Branch and Bound for $1\left|r_{j}\right| L_{\max }$

- Branch on "which job runs in position i.
- Use $1\left|r_{j}, p m t n\right| L_{\max }$ as a lower bound
- get feasible sol ins Example

$$
\begin{array}{c|c|c|r}
j & r_{j} & p_{j} & d_{j} \\
\hline 1 & \mathbf{0} & \mathbf{4} & 8 \\
2 & \mathbf{1} & 2 & 12 \\
3 & 3 & 6 & 11 \\
4 & 5 & 5 & 10
\end{array}
$$

preemptive EDD
among the jobs slat have keen velereed but nat find ed, min te are mecilesdonty

